Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Zhonghua Er Ke Za Zhi ; 61(1): 70-75, 2023 Jan 02.
Artigo em Chinês | MEDLINE | ID: mdl-36594125

RESUMO

Objective: To summarize the genotypes and clinical characteristics of homozygous family hypobetalipoproteinemia (Ho-FHBL) caused by apolipoprotein B (APOB) gene variations. Methods: The clinical, laboratory, genetic, and liver histology data of a boy with Ho-FHBL managed in the hepatology ward of the Children's Hospital of Fudan University in May 2021 were retrospectively analyzed. The literature was searched from China National Knowledge Infrastructure, Wanfang Data Knowledge Service Platform, China VIP database, China Biology Medicine disc and PubMed database (up to May 2022) with "familial hypobetalipoproteinemia" or "hypobetalipoproteinemias" or "hypo beta lipoproteinemia" or "hypolipoproteinemias" as the search terms. All relevant literatures were reviewed to summarize the clinical and genetic features of Ho-FHBL caused by APOB gene variations. Results: The male patient was admitted to the hospital due to abnormal liver function tests for 8 months at the age of 4 years and 6 months. Blood biochemistry showed transaminitis and abnormally low serum levels of lipids. Liver biopsy revealed fatty liver with inflammation and early cirrhosis (Brunt score was F3G2S4). Whole exome sequencing revealed two novel variants of APOB gene (c.3745C>T, p.Q1249 * from the father and c.4589_4592delinsAGGTAGGAGGTTTAACTCCTCCTACCT, p.T1530Kfs * 12 from the mother). He was diagnosed as Ho-FHBL caused by APOB gene compound heterozygous variations. Literature search retrieved 36 English literatures and 0 Chinese literature. A total of 55 (23 males and 32 females) Ho-FHBL cases, including this one, were caused by 54 APOB gene pathogenic variants (23 frameshift, 15 nonsense, 7 missense, 8 splice and 1 gross deletions). The age of the last follow-up was between 1 month and 75 years. Among them, 28 cases had lipid malabsorption, 19 cases had early dysplasia, 12 cases had no symptoms. Twenty-one patients had symptoms related to fat soluble vitamin deficiency, including 14 cases of acanthocytosis, 10 cases of neurological symptoms, and 6 cases of ocular lesions. Thirty-four patients had liver involvement, including 25 cases of elevated transaminase, 21 cases of fatty liver, 15 cases of hepatomegaly, 9 cases of liver fibrosis, 3 cases of liver cirrhosis, 1 case of hepatic hemangioma and 1 case of liver neoplastic nodule. Conclusions: The variants of APOB gene in Ho-FHBL are mainly frameshift and nonsense variations. Patients may have lipid malabsorption and (or) early dysplasia, or symptom-free. Liver involvement is common.


Assuntos
Abetalipoproteinemia , Fígado Gorduroso , Hipobetalipoproteinemias , Criança , Feminino , Humanos , Masculino , Pré-Escolar , Lactente , Abetalipoproteinemia/genética , Abetalipoproteinemia/diagnóstico , Estudos Retrospectivos , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/diagnóstico , Fígado Gorduroso/genética , Apolipoproteínas B/genética , Lipídeos
2.
J Clin Lipidol ; 16(6): 797-812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36243606

RESUMO

The Abetalipoproteinemia and Related Disorders Foundation was established in 2019 to provide guidance and support for the life-long management of inherited hypocholesterolemia disorders. Our mission is "to improve the lives of individuals and families affected by abetalipoproteinemia and related disorders". This review explains the molecular mechanisms behind the monogenic hypobetalipoproteinemia disorders and details their specific pathophysiology, clinical presentation and management throughout the lifespan. In this review, we focus on abetalipoproteinemia, homozygous hypobetalipoproteinemia and chylomicron retention disease; rare genetic conditions that manifest early in life and cause severe complications without appropriate treatment. Absent to low plasma lipid levels, in particular cholesterol and triglyceride, along with malabsorption of fat and fat-soluble vitamins are characteristic features of these diseases. We summarize the genetic basis of these disorders, provide guidance in their diagnosis and suggest treatment regimens including high dose fat-soluble vitamins as therapeutics. A section on preconception counseling and other special considerations pertaining to pregnancy is included. This information may be useful for patients, caregivers, physicians and insurance agencies involved in the management and support of affected individuals.


Assuntos
Abetalipoproteinemia , Hipobetalipoproteinemias , Transtornos do Metabolismo dos Lipídeos , Humanos , Abetalipoproteinemia/diagnóstico , Abetalipoproteinemia/genética , Abetalipoproteinemia/terapia , Hipobetalipoproteinemias/diagnóstico , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/terapia , Homozigoto , Vitaminas
3.
J Clin Lipidol ; 16(2): 155-159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221233

RESUMO

Complete deficiency of apolipoprotein (apo) B-containing lipoproteins can result from both abetalipoproteinemia (ABL) and homozygous hypobetalipoproteinemia (HoHBL), caused by bi-allelic loss-of-function variants in the MTTP and APOB genes encoding microsomal triglyceride transfer protein and apolipoprotein (apo) B, respectively. Both conditions are associated with failure to assemble and secrete apo B-containing lipoproteins from intestine and liver, resulting in absence of chylomicrons, very low-density lipoproteins and remnants, and low-density lipoproteins. Because absorption and transport of fat soluble vitamins requires intact production of apo B-containing lipoproteins, untreated patients develop fat soluble vitamin deficiencies, with associated clinical features including atypical retinitis pigmentosa, osteopenia, neuromyopathy and coagulopathy. Other features include acanthocytosis on the peripheral blood film, fat malabsorption and hepatosteatosis. We describe two patients with ABL and one with HoHBL who have each been on high dose oral fat soluble vitamin replacement under the care of the same physician for more than four decades. Each patient has remained clinically stable. A recent liver biopsy from an ABL patient showed mild macrovesicular steatosis, patchy microvesicular steatosis and mild fibrosis. These observations add to our understanding of the long term trajectory of ABL and HoHBL, and emphasize the importance of compliance to treatment and follow up.


Assuntos
Abetalipoproteinemia , Hipobetalipoproteinemias , Abetalipoproteinemia/genética , Apolipoproteína B-100 , Apolipoproteínas B , Seguimentos , Humanos , Hipobetalipoproteinemias/genética , Lipoproteínas , Lipoproteínas LDL
4.
J Investig Med High Impact Case Rep ; 9: 23247096211022484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34078172

RESUMO

Abetalipoproteinemia (ABL) is a rare recessive condition caused by biallelic loss-of-function mutations in the MTTP gene encoding the microsomal triglyceride transfer protein large subunit. ABL is characterized by absence of apolipoprotein B-containing lipoproteins and deficiencies in fat-soluble vitamins leading to multisystem involvement of which neurological complications are the most serious. We present 3 siblings with ABL who were born to non-consanguineous parents of Filipino and Chinese background. Identical twin boys with long-standing failure to thrive and malabsorption were diagnosed at age 2 years. ABL therapy with vitamins and a specialized diet was initiated, replacing total parenteral nutrition at age 3 years. Their younger sister was diagnosed from a blood sample taken at birth; treatment was instituted shortly thereafter. We observed in the twins reversal and in their sister prevention of ABL systemic features following early implementation of fat restriction and high doses of oral fat-soluble vitamins. A targeted sequencing panel found that each affected sibling is homozygous for a novel MTTP intron 13 -2A>G splice acceptor site mutation, predicted to abolish splicing of intron 13. This variant brings to more than 60 the number of reported pathogenic mutations, which are summarized in this article. The twin boys and their sister are now doing well at 11 and 4 years of age, respectively. This experience underscores the importance of early initiation of targeted specialized dietary and fat-soluble vitamin replacements in ABL.


Assuntos
Abetalipoproteinemia , Abetalipoproteinemia/genética , Pré-Escolar , Humanos , Recém-Nascido , Masculino , Mutação , Irmãos , Nucleotídeos de Timina , Vitamina A
5.
J Clin Lipidol ; 15(4): 569-573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34052173

RESUMO

"Normotriglyceridemic abetalipoproteinemia (ABL)" was originally described as a clinical entity distinct from either ABL or hypobetalipoproteinemia. Subsequent studies identified mutations in APOB gene which encoded truncated apoB longer than apoB48. Therefore, "Normotriglyceridemic ABL" can be a subtype of homozygous familial hypobetalipoproteinemia. Here, we report an atypical female case of ABL who was initially diagnosed with "normotriglyceridemic ABL", because she had normal plasma apoB48 despite the virtual absence of apoB100 and low plasma TG level. Next generation sequencing revealed that she was a compound heterozygote of two novel MTTP mutations: nonsense (p.Q272X) and missense (p.G709R). We speculate that p.G709R might confer residual triglyceride transfer activity of MTTP preferentially in the intestinal epithelium to the hepatocytes, allowing production of apoB48. Together, "normotriglyceridemic ABL" may be a heterogenous disorder which is caused by specific mutations in either APOB or MTTP gene.


Assuntos
Abetalipoproteinemia/genética , Apolipoproteína B-100/genética , Apolipoproteína B-48/genética , Proteínas de Transporte/genética , Heterozigoto , Mutação/genética , Abetalipoproteinemia/sangue , Abetalipoproteinemia/diagnóstico , Adulto , Idoso , Apolipoproteína B-100/sangue , Apolipoproteína B-48/sangue , Biomarcadores/sangue , Proteínas de Transporte/sangue , Feminino , Humanos , Masculino
6.
J Pediatr Gastroenterol Nutr ; 73(1): 4-8, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33853111

RESUMO

ABSTRACT: Familial intestinal hypocholesterolemias, such as abetalipoproteinemia, hypobetalipoproteinemia, and chylomicron retention disease, are rare genetic diseases that result in a defect in the synthesis or secretion of lipoproteins containing apolipoprotein B.In children, these conditions present with diarrhoea and growth failure, whereas adults present with neuromuscular, ophthalmological, and hepatic symptoms. Simple laboratory investigations have shown that diagnosis can be made from findings of dramatically decreased cholesterol levels, deficiencies in fat-soluble vitamins (mostly vitamin E), endoscopic findings of the characteristic white intestinal mucosa, and fat-loaded enterocytes in biopsy samples. Genetic analysis is used to confirm the diagnosis. Treatment is based on a low-fat diet with essential fatty acid supplementation, high doses of fat-soluble vitamins, and regular and life-long follow-up.The present study examines cases and literature findings of these conditions, and emphasises the need to explore severe hypocholesterolemia and deficiencies in fat-soluble vitamins to not miss these rare, but easy to diagnose and treat, disorders.


Assuntos
Abetalipoproteinemia , Hipobetalipoproteinemias , Abetalipoproteinemia/diagnóstico , Abetalipoproteinemia/genética , Adulto , Apolipoproteínas B , Criança , Humanos , Hipobetalipoproteinemias/diagnóstico , Hipobetalipoproteinemias/genética , Lipídeos , Vitamina E
7.
J Clin Lab Anal ; 35(3): e23672, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33258201

RESUMO

BACKGROUND: Our aims were to describe the first Mexican patient with abetalipoproteinemia and to perform a comparative analysis of biochemical, clinical, and genetic characteristics of 100 cases reported in the literature. METHODS: We performed biochemical and molecular screenings in a Mexican girl with extremely low lipid levels and in her family. Further, we integrated and evaluated the characteristics of the cases with abetalipoproteinemia described in the literature. RESULTS: Our patient is a six-year-old girl who presented vomiting, chronic diarrhea, failure to thrive, malabsorption, acanthocytosis, anemia, transaminases elevation, and extremely low lipid levels. MTTP gene sequencing revealed homozygosity for a novel mutation p.Gly417Valfs*12 (G deletion c.1250). With the analysis of the reported cases, 60 clinical features (14 classical and 46 non-classical) were observed, being the most common acanthocytosis (57.5%), malabsorption (43.7%), and diarrhea (42.5%); 48.8% of the patients presented only classic clinical features, while the remaining 51.2% developed secondary effects due to a fat-soluble vitamin deficiency. An odds ratio analysis disclosed that patients diagnosed after 10 years of age have an increased risk for presenting clinical complications (OR = 18.0; 95% CI 6.0-54.1, p < 0.0001). A great diversity of mutations in MTTP has been observed (n = 76, being the most common p.G865X and p.N139_E140) and some of them with possible residual activity. CONCLUSION: The first Mexican patient with abetalipoproteinemia presents a novel MTTP mutation p.Gly417Valfs*12. Three factors that could modulate the phenotype in abetalipoproteinemia were identified: age at diagnosis, treatment, and the causal mutation.


Assuntos
Abetalipoproteinemia/genética , Proteínas de Transporte/genética , Mutação , Abetalipoproteinemia/etiologia , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , México , Pessoa de Meia-Idade , Linhagem
10.
Curr Opin Lipidol ; 31(2): 49-55, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32039990

RESUMO

PURPOSE OF REVIEW: Several mutations in the apolipoprotein (apo) B, proprotein convertase subtilisin kexin 9 (PCSK9) and microsomal triglyceride transfer protein genes result in low or absent levels of apoB and LDL cholesterol (LDL-C) in plasma which cause familial hypobetalipoproteinemia (FHBL) and abetalipoproteinemia (ABL). Mutations in the angiopoietin-like protein 3 ANGPTL3 gene cause familial combined hypolipidemia (FHBL2). Clinical manifestations range from none-to-severe, debilitating and life-threatening disorders. This review summarizes recent genetic, metabolic and clinical findings and management strategies. RECENT FINDINGS: Fatty liver, cirrhosis and hepatocellular carcinoma have been reported in FHBL and ABL probably due to decreased triglyceride export from the liver. Loss of function mutations in PCSK-9 and ANGPTL3 cause FHBL but not hepatic steatosis. In 12 case-control studies with 57 973 individuals, an apoB truncation was associated with a 72% reduction in coronary heart disease (odds ratio, 0.28; 95% confidence interval, 0.12-0.64; P = 0.002). PCSK9 inhibitors lowered risk of cardiovascular events in large, randomized trials without apparent adverse sequelae. SUMMARY: Mutations causing low LDL-C and apoB have provided insight into lipid metabolism, disease associations and the basis for drug development to lower LDL-C in disorders causing high levels of cholesterol. Early diagnosis and treatment is necessary to prevent adverse sequelae from FHBL and ABL.


Assuntos
Abetalipoproteinemia/sangue , Doenças Cardiovasculares/sangue , Hipobetalipoproteinemias/sangue , Hepatopatias/sangue , Abetalipoproteinemia/genética , Abetalipoproteinemia/metabolismo , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Humanos , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Hepatopatias/genética , Hepatopatias/metabolismo
11.
J Clin Res Pediatr Endocrinol ; 12(4): 427-431, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31914726

RESUMO

Abetalipoproteinaemia (ABL) is an autosomal recessive disorder characterized by very low plasma concentrations of total cholesterol and triglyceride (TG). It results from mutations in the gene encoding microsomal TG transfer protein (MTTP). A nine-month-old girl was admitted to hospital because of fever, cough, diarrhea and failure to thrive. She had low cholesterol and TG levels according to her age. The peripheral blood smear revealed acanthocytosis. Thyroid function test showed central hypothyroidism. Cranial magnetic resonance imaging revealed the retardation of myelination and pituitary gland height was 1.7 mm. A homozygous novel mutation [c.506A>T (p.D169V)] was detected in the MTTP gene. Vitamins A, D, E, and K and levothyroxine were started. The coexistence of ABL and central hypothyroidism has not previously been reported. A homozygous novel mutation [c.506A>T (p.D169V)] was detected in the MTTP gene.


Assuntos
Abetalipoproteinemia/patologia , Proteínas de Transporte/genética , Hipotireoidismo/patologia , Mutação , Abetalipoproteinemia/complicações , Abetalipoproteinemia/genética , Feminino , Humanos , Hipotireoidismo/complicações , Hipotireoidismo/genética , Lactente , Prognóstico
13.
Atherosclerosis ; 284: 75-82, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30875496

RESUMO

BACKGROUND AND AIMS: Abetalipoproteinemia (ABL) is a rare recessive monogenic disease due to MTTP (microsomal triglyceride transfer protein) mutations leading to the absence of plasma apoB-containing lipoproteins. Here we characterize a new ABL case with usual clinical phenotype, hypocholesterolemia, hypotriglyceridemia but normal serum apolipoprotein B48 (apoB48) and red blood cell vitamin E concentrations. METHODS: Histology and MTP activity measurements were performed on intestinal biopsies. Mutations in MTTP were identified by Sanger sequencing, quantitative digital droplet and long-range PCR. Functional consequences of the variants were studied in vitro using a minigene splicing assay, measurement of MTP activity and apoB48 secretion. RESULTS: Intestinal steatosis and the absence of measurable lipid transfer activity in intestinal protein extract supported the diagnosis of ABL. A novel MTTP c.1868G>T variant inherited from the patient's father was identified. This variant gives rise to three mRNA transcripts: one normally spliced, found at a low frequency in intestinal biopsy, carrying the p.(Arg623Leu) missense variant, producing in vitro 65% of normal MTP activity and apoB48 secretion, and two abnormally spliced transcripts resulting in a non-functional MTP protein. Digital droplet PCR and long-range sequencing revealed a previously described c.1067+1217_1141del allele inherited from the mother, removing exon 10. Thus, the patient is compound heterozygous for two dysfunctional MTTP alleles. The p.(Arg623Leu) variant may maintain residual secretion of apoB48. CONCLUSIONS: Complex cases of primary dyslipidemia require the use of a cascade of different methodologies to establish the diagnosis in patients with non-classical biological phenotypes and provide better knowledge on the regulation of lipid metabolism.


Assuntos
Abetalipoproteinemia/metabolismo , Apolipoproteína B-48/sangue , Eritrócitos/química , Vitamina E/análise , Abetalipoproteinemia/sangue , Abetalipoproteinemia/genética , Proteínas de Transporte/genética , Criança , Feminino , Seguimentos , Heterozigoto , Humanos , Recém-Nascido , Mutação
14.
J Clin Lipidol ; 13(1): 201-212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30522860

RESUMO

BACKGROUND: Abetalipoproteinemia, a recessive disease resulting from deleterious variants in MTTP (microsomal triglyceride transfer protein), is characterized by undetectable concentrations of apolipoprotein B, extremely low levels of low-density lipoprotein cholesterol in the plasma, and a total inability to export apolipoprotein B-containing lipoproteins from both the intestine and the liver. OBJECTIVE: To study lipid absorption after a fat load and liver function in 7 heterozygous relatives from 2 abetalipoproteinemic families, 1 previously unreported. RESULTS: Both patients are compound heterozygotes for p.(Arg540His) and either c.708_709del p.(His236Glnfs*11) or c.1344+3_1344+6del on the MTTP gene. The previously undescribed patient has been followed for 22 years with ultrastructure analyses of both the intestine and the liver. In these 2 families, 5 relatives were heterozygous for p.(Arg540His), 1 for p.(His236Glnfs*11) and 1 for c.1344+3_1344+6del. In 4 heterozygous relatives, the lipid absorption was normal independent of the MTTP variant. In contrast, in 3 of them, the increase in triglyceride levels after fat load was abnormal. These subjects were additionally heterozygous carriers of Asp2213 APOB in-frame deletion, near the cytidine mRNA editing site, which is essential for intestinal apoB48 production. Liver function appeared to be normal in all the heterozygotes except for one who exhibited liver steatosis for unexplained reasons. CONCLUSION: Our study suggests that a single copy of the MTTP gene may be sufficient for human normal lipid absorption, except when associated with an additional APOB gene alteration. The hepatic steatosis reported in 1 patient emphasizes the need for liver function tests in all heterozygotes until the level of risk is established.


Assuntos
Abetalipoproteinemia/genética , Proteínas de Transporte/genética , Genótipo , Fígado/metabolismo , Deleção de Sequência/genética , Adolescente , Adulto , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Criança , Pré-Escolar , Heterozigoto , Humanos , Lactente , Metabolismo dos Lipídeos , Síndromes de Malabsorção , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo Genético , Período Pós-Prandial , Adulto Jovem
18.
J Clin Lipidol ; 10(4): 1030-1034, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27578136

RESUMO

Abetalipoproteinemia (ABL) is a rare recessive genetic disease caused by mutations of the MTTP gene. This disease is characterised by a defect in the lipidation of APO B and the absence of VLDL and chylomicron production. Patients affected by ABL present neurological, hemalogical and gastro-intestinal symptoms due to deficiency in lipophilic vitamins and fat malabsorption. We herein report the case of two cousins, one presenting classical symptoms of abetalipoproteinemia and one presenting a much attenuated phenotype. The proband carried a novel combination of MTTP mutations, the 1867+1G>A and the R540C mutations. This patient never received any vitamin supplements and was relatively free of symptoms despite an undetectable APO B concentration. Her cousin was homozygous for 1867+1G>A MTTP mutation and presented most of the classical symptoms of ABL. In conclusion we report a very unusual kindred where on affected member is strongly symptomatic of ABL whereas the other presents very mostly asymptomatic disease suggesting that ABL can present itself with a very incomplete clinical penetrance.


Assuntos
Abetalipoproteinemia/genética , Abetalipoproteinemia/metabolismo , Adulto , Proteínas de Transporte/genética , Feminino , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Adulto Jovem
19.
Biochim Biophys Acta ; 1861(11): 1623-1633, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27487388

RESUMO

We describe two new hypolipidemic patients with very low plasma triglyceride and apolipoprotein B (apoB) levels with plasma lipid profiles similar to abetalipoproteinemia (ABL) patients. In these patients, we identified two previously uncharacterized missense mutations in the microsomal triglyceride transfer protein (MTP) gene, R46G and D361Y, and studied their functional effects. We also characterized three missense mutations (H297Q, D384A, and G661A) reported earlier in a familial hypobetalipoproteinemia patient. R46G had no effect on MTP expression or function and supported apoB secretion. H297Q, D384A, and G661A mutants also supported apoB secretion similarly to WT MTP. Contrary to these four missense mutations, D361Y was unable to support apoB secretion. Functional analysis revealed that this mutant was unable to bind protein disulfide isomerase (PDI) or transfer lipids. The negative charge at residue 361 was critical for MTP function as D361E was able to support apoB secretion and transfer lipids. D361Y most likely disrupts the tightly packed middle α-helical region of MTP, mitigates PDI binding, abolishes lipid transfer activity, and causes ABL. On the other hand, the hypolipidemia in the other two patients was not due to MTP dysfunction. Thus, in this study of five missense mutations spread throughout MTP's three structural domains found in three hypolipidemic patients, we found that four of the mutations did not affect MTP function. Thus, novel mutations that cause severe hypolipidemia probably exist in other genes in these patients, and their recognition may identify novel proteins involved in the synthesis and/or catabolism of plasma lipoproteins.


Assuntos
Abetalipoproteinemia/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Hipobetalipoproteinemias/genética , Mutação de Sentido Incorreto/genética , Abetalipoproteinemia/sangue , Sequência de Aminoácidos , Animais , Apolipoproteínas B/metabolismo , Células COS , Criança , Chlorocebus aethiops , Simulação por Computador , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Humanos , Hipobetalipoproteinemias/sangue , Lactente , Metabolismo dos Lipídeos/genética , Masculino , Fenótipo , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/metabolismo , Alinhamento de Sequência , Relação Estrutura-Atividade , Triglicerídeos/metabolismo , Vitaminas/sangue , Adulto Jovem
20.
Atherosclerosis ; 250: 52-6, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27179706

RESUMO

BACKGROUND AND AIMS: Familial hypobetalipoproteinemia (FHBL) is a co-dominant disorder characterized by decreased plasma levels of LDL-cholesterol and apolipoprotein B (ApoB). Currently, genetic diagnosis in FHBL relies largely on Sanger sequencing to identify APOB and PCSK9 gene mutations and on western blotting to detect truncated ApoB species. METHODS: Here, we applied targeted enrichment and next-generation sequencing (NGS) on a panel of three FHBL genes and two abetalipoproteinemia genes (APOB, PCSK9, ANGPTL3, MTTP and SAR1B). RESULTS: In this study, we identified five likely pathogenic heterozygous rare variants. These include four novel nonsense mutations in APOB (p.Gln845*, p.Gln2571*, p.Cys2933* and p.Ser3718*) and a rare variant in PCSK9 (Minor Allele Frequency <0.1%). The affected family members tested were shown to be carriers, suggesting co-segregation with low LDL-C. CONCLUSIONS: Our study further demonstrates that NGS is a reliable and practical approach for the molecular screening of FHBL-causative genes that may provide a mean for deciphering the genetic basis in FHBL.


Assuntos
Apolipoproteína B-100/genética , Hipobetalipoproteinemias/genética , Mutação , Abetalipoproteinemia/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , LDL-Colesterol/genética , Códon sem Sentido , Biblioteca Gênica , Variação Genética , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipobetalipoproteinemias/diagnóstico , Pessoa de Meia-Idade , Linhagem , Fenótipo , Pró-Proteína Convertase 9/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...